
Chapter 5 

Phonons II 

Thermal Properties



Phonon Heat Capacity

Fig. 1

< n k,p > is the thermal equilibrium occupancy of phonon wavevector K

and polarization p,

Total energy at kBT,  U = Σ Σ < nk,p> ħ
k,  p  

Plank Distribution function

For large T,  ħ/kBT << 1

i.e. large x, 

<n>  =  kBT / ħ  T

 = ħ / [exp (ħ/kBT) -1]



Quantization of Elastic Waves

-- The energy of lattice vibration is quantized. 

-- The quantum of energy called a phonon, and 

the quantum number is denoted as  n. 

-- The elastic waves in crystals are made of phonons.

-- Thermal vibration in crystals are thermally excited phonons.

The energy of an elastic mode of angular frequency  is

When the mode is excited to quantum number n, that is, 

When the mode is occupied by n phonons. 

The term  ½  ћ is the zero point energy of the mode. 

𝜖 ＝ ( n ＋
1

2
) ℏ𝜔 (27)



The Boltzmann factor

Derivation of Plank Distribution :

Consider a situation where we have a set of identical oscillators in 

thermal equilibrium,  

n -1 th

nth quantum state

n +1 th ħ

Compare the energy difference ħ of 

the two adjacent quantum states to the 

thermal excitation energy kBT

The ratio of the number of oscillators in 

their (n+1)th quantum state of excitation 

to the number in nth quantum state is 

The ratio of the number of oscillators in the nth quantum state 

to the total number of oscillators is 

Nn =  N0 exp(-nħ /t)



Plank Distribution,

as the Eq.(2)

We let  x = exp (-ħ / kBT), and t  = kBT,   the denominator becomes

Then, the numerator is

We compute the average excitation quantum number n of an oscillator to be



Plank Distribution

Fig. 1

< n k,p > is the thermal equilibrium occupancy of phonon wavevector K,

and polarization p At large T,   <n> ~  linear in T

From Fig. 1, <n> + ½    ~ (kBT)/ħ

(<n> + ½  ) ħ ~  kBT , 

as in the classical limit

1/2



The total energy of the phonons in a crystal is by summing over all phonon modes K, p

We take < n > as the Plank distribution

Introducing the concept of Dp(), the density of phonon modes (states),

at polarization p of frequency in the range  from  to  + d

Lattice Heat Capacity

at constant volume

indexed by the phonon wave vector K, 

and the polarization p

Let X = ħ / kBT

Contributions from phonons only

CV ≡ (𝜕U/𝜕T)V



Fig. 2

(1) For the density of states in one dimension : 
(A) Fixed Boundary Condition

Consider a 1-dimensional line of N +1 atoms.   Considering  N = 10,

For fixed boundaries, the end atoms s = 0, and 10 are held fixed, i.e. us = 0.

The vibration takes up the form of a standing wave with the atomic displacement

The fixed boundary condition requires that at the end, us = 0 for s = 0 and s = N,

For s = 0,  sin sKa = 0.

For s = N, NKa = np , K= np / Na = np / L ,  where n = 1  to  N-1.

Fig. 3

Showing  the N -1 allowed values of K

in K space



*** For the one dimensional line, there is one mode for each interval, 

 K = p / L

*** And the number of modes per unit range of K is  L/p for K < p / a ,

and it is zero for K > p /a,   thus  D(K) = dN/dK = L /p

For K = Kmax= Np / L = p / a , us = 0  for each atom, hence this K is 

not a valid solution

For K = p / L,

us = 0 for  s = 0 and s = N 

There are N -1 allowed values of K .  And there are N-1 atoms allowed to move.



(B) Periodic Boundary Conditions :

For an bounded medium, and require the solutions be periodic over a

large distance L, namely,  u (sa) = u (sa + L), where  L = Na .

We use the traveling (running) wave solution

Us = u(0) exp [ i(sKa - wkt)]

The periodic boundary condition leads to 

exp (isaK) = exp (isaK + iKL),  then exp (iKL ) = 1 , 

KL = ± 2np ,  K = ± 2np / L,  n is integer from 0, to N

There is one mode for every interval.   K = 2p/L.   

For periodic boundary conditions, the number of modes per unit range of K 

is dN/dK= L/2p for  –p/a < K < p/a, and is zero otherwise.  

Group velocity g

For the fixed boundary condition

(Np/Na = p/a)





Periodic Boundary Condition for a 1-D Lattice

Exp (isKa)



Fig. 6

For a 2D square lattice



(2) For the density of States in 3D: 
Considering  N3 primitive cells each of edge L

There is one allowed value of  K per volume of  (2p/L)3 or 

Allowed value of K per unit 

volume of K space.

For a volume of a sphere of radius of K, the total number of modes of 

wavevectors less than K is

The density of states for each polarization is 

=  (dN/dK) / (dK/d)

dN/dK



Debye Model for Density of States

In the Debye approximation, the velocity of sound is taken as a constant.
 is the velocity of sound, this usually applies for small  and small K ,

such as for the acoustic mode for an elastic continuum.

N = (V3)/ 6p2v3

In the Debye model, we define a maximum cuttoff frequency D ,

and a maximum cutoff wavevector KD

The thermal energy of phonons in a crystal is

From  Eq. 19 

From  Eq. 19 



 vs k Dispersion for Monoatomic Lattice

Linear



Assuming phonon velocity  is independent of polarization for all three direction, 

We can multiply a factor of three 

where x = ħ / kBT

q = hD /kB , and from eq. 23

We Define Debye temperature q

The total phonon energy is  



By differentiating the eq. (26) w.r.t. T , we get

(1) For large T, x is small, we can expand the integrand, and 

Cv = 3NkB ,  since U = 3NkBT in the large T limit.

(2) For low T, xD is approaching to infinity, thus in Eq. (29),

∫dx X2

The Debye T3 Law for low temperature

CV ≡ (𝝏U/𝝏T)V ,



Fig. 7

, CV ~T3 term

CV

3 N kB

At  t/q < 0.1



Fig. 8



Fig. 9 The low temperature heat capacity of solid Argon linear dependence of T3



Fig. 10

Of the allowed volume in K space, the fraction occupied by the excited modes

is of the order of (T/D)3 or (KT/KD)3, where KT is the thermal wavevector

defined as  ħT = kBT,  and T =  KT.     

Hence ħKT =  kBT ,  and    ħKD =  kBq ,          KT/KD = T/ q

Thus the fraction occupied is  (T/q)3 of the total volume in the K space.

For 3N modes of energy KBT, we get U = 3NKBT (T/q)3, 

and     CV ~  U/ T = 12 NKB(T/q)3    , as the T3 dependence

A qualitative approach of

deriving the Debye T3 Law

At temp T, the phonons modes 

are excited to have a wavevector KT ,

with thermal energy kBT .



Einstein Model of Density of States

D (w) = N d (w-wo) We have N oscillators of identical frequency wo

At high T, x is << 1, CV  = NkB.  For 3D, N is replaced by 3N. 

The high T  CV = 3NKB as the Dulong and Petit value.

At low T, x is >> 1 , CV = exp (-h/kBT)

This model usually applies to optical phonon modes,

where  is nearly independent of K.

o

D()



= 3



o

D()



This model usually applies to optical phonon modes,

where  is nearly independent of K.

Optical phonon modes

Einstein Model for D()



 =  K, acoustic mode 
 + d

Near the zone boundary, a 

large population of states in 

K, i.e. a peak in D(), the 

corresponding g is zero. 

Vg is zero g

At zone boundary

K   K + dK



Fig. 11 Experimental CV vs  T/q for diamond compared to the Einstein Model

in dashed line . qE= ħw/KB =1320K

Low T,  CV =  exp (-ħ /kBT)

High T, CV = NkB

Diamond



Fig. 12

General Expressions for D() :

As the density of states per unit frequency range at a given (K) 

For phonon frequency between  and  + d

The integral is extended over the volume of shell in K space bounded between 

two surfaces of constant frequency  , and constant frequency  + d

The volume between the constant frequency surfaces  and  + d

is a right cylinder of a base of dS and an altitude of dK

Where dK is the perpendicular distance 

between two constant frequency surfaces, 

and dSw is an element of area of the constant 

frequency surface of  in K space. 



Fig. 13
The quantity dK is the perpendicular distance between two constant 

frequency surfaces  , and  + d

dS

 shell d
3K =  dcylinders

=  dS dK





Fig. 14

The density of states D() vs  for (a) the Debye Solid; (b) the actual solid.  

The spectrum for the crystal structure starts as 2 , but discontinuity develops at the

singular points (g= 0).

known as the 

Van Hove Singularity

Debye Model,  =  K,  is a constant,

It is a good approximation for small 

and for the accoustic mode, D() ~2

Near the brilllouin zone boundary,

g is approaching to zero, and the 

dispersion of  vs K is very flat.  

This leads to a large peak (singular 

points) in the D().

Debye modes

D

cut off freq.

0

g= 0



 =  K, acoustic mode


 + d

Near the zone boundary, a 

large population of states in 

K, i.e. a peak in D(), the 

corresponding g is zero. 

is nearly zero,

optical modes 

At zone boundary

K   K + dK

/K ~0         g ~0

g



In real crystals :  Anharmonic crystal interactions

The energy includes higher order terms than the quadratic (harmonic) term.

U3 = A exxeyyezz

Three phonon processes are caused by the third order terms in the lattice 

potential energy.

Thermal Expansions:  

g : asymmetry of mutual repulsion interaction

f : softening of the vibration at large x

U(x)

0

Including anharmonic energy terms

x

Harmonic interaction: the quadratic terms of strains.  (Hooke’s Law)

Two lattice waves do not interact, and there is no thermal expansion, etc.   

c, f, g are positive.



<x> is linear at higher T, but

<x> is ~0 at very low T

By using the Boltzmann distribution, we calculate average displacement < x>, 

as the ratio of the following two terms: 

 = 1/ kBT

only this term 



Fig. 15 Lattice constant of solid Argon as a function of temperature

Thermal expansion



THERMAL CONDUCTIVITY

jU as the flux of thermal energy transmitted 

per unit time per unit area.

dT/dx is the temperature gradient

K is  in unit of  W cm-1K-1

The process of transfer of thermal energy is not a straight path, but it is a random

diffusion process with many frequent collisions (mean free path).

jU = <Nf> c T , <Nf>  is the particle flux = n< vx>  in the x direction, 

c is the heat capacity of a particle.

Here we introduce:  T = dT/dx łx = dT/dx <vx>t

łx is the mean free path between collisions, t is the average time between collisions

let   l = vt , C= nc, heat capacity of the phonons 

Debye’s Expression for 

J =  E  =  dV/dx ,  : electrical conductivity



~5 Km/sec

SiO2



Phonon mean free path  l

Harmonic interactions between 

atoms, no third phonons involved

Geometrical scattering by 

crystal boundaries, and lattice 

imperfections, etc.

Scatterings by other phonons

Anharmonic interactions with 

third phonon

At high T, frequency of collisions <f>

<f>  <N >  ~ KBT

l  1/f  1/T

  1/T

Thermal Resistivity of Phonon Gas

At low T

l is limited by sample width D

l

T

D



Crystal imperfections: 

 At high T, l ~ 1/T,    1/T

 At low  T, l ~ D, limited by the sample width,

 K varies as T3 at low T, and displays a 

maximum feature due to the temperature 

dependence of ł .

T3 1/T

At low T,  as C ~T3, so    T3

NaF



Thermal conductivity 

 Metals have high thermal conductivity, like Cu, 

K ~ 100 Wcm-1K-1, 

 Ga has a very high K at 1.8 K, for 845 Wcm-1K-1

 It is mostly via conduction electrons. (Chapter 6)

 Some dielectrics, and oxide crystals like  

sapphire Al2O3,  the  has a maximum of 

200 Wcm-1K-1 at 30K, as it is via phonons !

NaF has a maximum conductivity ~ 200 at 20K.



seen by an elastic wave. This leads to a significant increase in thermal conductivity.

Isotope effect increases 

the thermal conductivity

by a factor of 2-3.

Ge

Phys. Rev. 110, 773 (1958)



Age 95,                 Age 85



(A)The Normal process: 

For a three phonon collision process:  the total momentum of the phonon 

gas is not changed by such a collision.  

At equilibrium, the total phonon momentum is conserved.  

(B) The Umklapp Process: the three phonon process that caused thermal 

resistivity, 

G is a reciprocal lattice vector,

the  “U”  process .

G = 0,        the N process



The Normal process The Umklapp process

In the first Brillouin zone In the first Brillouin zone

Umklapp scattering is the dominant process for thermal resistivity at high temperatures for low 

defect crystals. The thermal conductivity for an insulating crystal where the U -processes are 

dominant has 1/T dependence. The name derives from the German word umklappen (to turn over). 

https://en.wikipedia.org/wiki/Thermal_resistivity


Homework of Chapter 5

• Problem No. 3 

• Problem No. 4





Open end tube

Ju is finite, dT/dX = 0, thus the thermal conductivity K is infinite !

Hot Hot



Close end tube

Hot Cold

Net energy transfer = Ju is finite 



The  N  Process,

Shine light on 

G = 0

The thermal conductivity K is infinite !



The  U  process,    G 0 

The momentum G, and the energy are transmitted to the crystal,

causing the temperature change.

Ju = finite,   dT/dx = finite.

source sink

Net energy transfer



Low-Tc Superconductivity Mechanism

-kk

Electron phonon coupling

BCS Theory in 1957

e
e

Two electrons are bounded in pairs.



The Electron-Phonon Spectra Function of 

the Low Tc A-15 Compound Nb3Al

2


